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ABSTRACT

The North AmericanMultimodel Ensemble (NMME) forecasting system has been continuously producing

seasonal forecasts since August 2011. The NMME, with its suite of diverse models, provides a valuable op-

portunity for characterizing forecast confidence using probabilistic forecasts. The current experimental

probabilistic forecast product (in map format) presents the most likely tercile for the seasonal mean value,

chosen out of above normal, near normal, or below normal categories, using a nonparametric counting

method to determine the probability of each class. The skill of the 3-month-mean probabilistic forecasts of

2-m surface temperature (T2m), precipitation rate, and sea surface temperature is assessed using forecasts

from the 29-yr (1982–2010) NMMEhindcast database. Three forecast configurations are considered: a full six-

model NMME; a ‘‘mini-NMME’’ with 24 members, four each from six models; and the 24-member CFSv2

alone. Skill is assessed on the cross-validated hindcasts using the Brier skill score (BSS); forecast reliability

and resolution are also assessed. This study provides a baseline skill assessment of the current method of

creating probabilistic forecasts from the NMME system.

For forecasts in the above- and below-normal terciles for all variables and geographical regions examined in

this study, BSS for NMME forecasts is higher than BSS for CFSv2 forecasts. Niño-3.4 forecasts from the full

NMMEand themini-NMME receive nearly identical BSS that are higher thanBSS for CFSv2 forecasts. Even

systems with modest BSS, such as T2m in the Northern Hemisphere, have generally high reliability, as shown

in reliability diagrams.

1. Introduction

Most official short-term climate forecasts from the

National Oceanic and Atmospheric Administration

(NOAA) and other forecasting centers are now issued

in a probabilistic format, providing the end user with

quantitative information about forecast uncertainty and

allowing formore informed risk assessment and decision

making (Tebaldi and Knutti 2007). A considerable ad-

vantage of multimodel ensembles (MMEs) over a

single-model approach is thought to be the ability to

sample forecast uncertainty due to model diversity

(Palmer et al. 2004; Hagedorn et al. 2005; Doblas-Reyes

et al. 2005; Kirtman and Min 2009). Performance im-

provements from one MME system to another have

been noted as model resolution has increased and

upgrades have been made to physics, coupling mecha-

nisms, and data assimilation; an example of this is

the progression from DEMETER to ENSEMBLES

(Weisheimer et al. 2009; Alessandri et al. 2011).

The North American Multimodel Ensemble (NMME)

has been producing real-timemonthly-mean and seasonal

anomaly forecasts regularly since August 2011 (Kirtman

et al. 2014). The real-time forecasts, which are published

by NOAA’s Climate Prediction Center (CPC) by the

ninth day of every month, include deterministic forecasts

(forecasts for a specific anomaly) for each participating

model and theMME, and probabilistic forecasts based on

the entire ensemble of all models, all members. The

NMME,with its large number of contributingmodels and

ensemble members, presents a valuable opportunity for

characterizing uncertainty due to both model diversity

and uncertainty in initial conditions, and the probabilistic

forecasts were added to the suite of real-time NMME

forecast products in November 2012.

This study assesses the skill of the current version of

NMME probabilistic forecasts. These forecasts are
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currently in use by operational forecasters and other

users of climate outlooks, and have been targeted for

further development and calibration. As such, an as-

sessment of the current baseline skill is in order. As the

NMME has both a large total number of ensemble

members and the advantage that comes from the com-

bination of several models with different physics, data

assimilation, and initializations, we present statistical

analysis of the skill of forecasts for three configurations:

all ensemble members from the entire six-model NMME,

a 24-member ‘‘mini-NMME’’ comprising four members

from each of the six models, and the 24-member Climate

Forecast System version 2 (CFSv2).

CFSv2 is the NMME participant model with the

largest number of ensemble members, allowing a better

chance for resolving forecast probabilities, and proba-

bilistic forecasts from this model were already in use by

forecasters at the CPC before NMME emerged. The

mini-NMME is included to assess the skill of a multi-

model system with an equal number of ensemble

members per model; a combination with four members

from each of the six models provides an ensemble with

the same number of members as the CFSv2. The com-

parison of results from these three systems (NMME,

mini-NMME, and CFSv2) also allows us to draw some

preliminary conclusions about the relative advantages of

increased ensemble size and model diversity. As the

number of real-time forecasts is small as yet (November

2012 to the present), this paper focuses on the retro-

spective forecasts (also known as hindcasts) from 1982

to 2010.

2. Data and methods

a. The North American Multimodel Ensemble

The NMME is a forecasting system consisting of

coupled models from U.S. and Canadian modeling

centers (Kirtman et al. 2014). The NMME has been

producing global monthly-mean and seasonal forecasts

since August 2011 for 2-m surface temperature, sea

surface temperature (SST), and precipitation rate; real-

time and archived forecast graphics fromAugust 2011 to

the present are available online at www.cpc.ncep.noaa.

gov/products/NMME/. Real-time probabilistic fore-

casting with the NMME started in November 2012.

To date, at various times, six centers have contributed

11 models to the NMME (see www.cpc.ncep.noaa.gov/

products/NMME/Phase1models.png for details of all

the models). All participating models are required to

produce monthly-mean forecast data on a 1.08
longitude 3 1.08 latitude grid (for a grid size of 360 3
181), with leads up to at least 7 months. Initialization,

data assimilation, and model physics are left up to the

modeling centers. Forecasts are producedmonthly, for a

total of 12 initial condition months. Retrospective runs

of the forecast version of each model from 1982–2010

allow for model calibration, bias removal, and skill

assessment.

As several of these models are recent additions, this

study uses an NMME consisting of six models that have

been in regular use in all of 2014–15 to approximate the

skill of the current real-time forecasting system. All

models have year-round hindcasts available over the

period 1982–2010. These are the NCEP-CFSv2 (Saha

et al. 2014), CMC-CanCM3 and CanCM4 (Merryfield

et al. 2013), GFDL-CM2.1 (Zhang et al. 2007), NCAR-

CCSM4 (B. Kirtman et al. 2015, unpublished manu-

script), and NASA-GEOS5 (Vernieres et al. 2012). See

Table 1 for more detail about the six models used in

this study. The hindcasts from several older and newer

models, not used for this study, are still available for

research.

b. Verification fields

The observation verification field for 2-m temperature

(T2m) is the station observation-based monthly mean

surface air temperature dataset GHCN1CAMS, a

combination of the Global Historical Climatology Net-

work (GHCN) and the Climate Anomaly Monitoring

System (CAMS), two station networks. The station re-

ports are interpolated to a grid with native resolution of

0.58 latitude 3 0.58 longitude (Fan and van den Dool

2008). The data were regridded to the 1.08 3 1.08 grid for

NMME purposes. As the 7-month lead forecasts ini-

tialized in 2010 stretch into 2011, the observation period

used in this study for all verification fields runs from

January 1982 to July 2011.

Precipitation forecasts are verified using the CPC

Merged Analysis of Precipitation (CMAP). This dataset

merges rain gauge observations with precipitation esti-

mates from several satellite-based algorithms (Xie and

Arkin 1997). CMAP, which is produced on a 2.58 3 2.58
latitude/longitude grid, is rescaled via bilinear in-

terpolation to 1.08 3 1.08 for this study.
The SST prediction was verified using the optimum

interpolation version 2 (OI) analysis of Reynolds et al.

(2002). This analysis, produced at NOAA, uses both

satellite data and in situ records from ships and buoys.

The native resolution of theReynolds et al. (2002) SST is

18 latitude 3 18 longitude.

c. Probabilistic forecast construction in real-time
NMME

In a general sense, probabilistic forecasts from en-

semble models are constructed by determining how

3016 JOURNAL OF CL IMATE VOLUME 29

http://www.cpc.ncep.noaa.gov/products/NMME/
http://www.cpc.ncep.noaa.gov/products/NMME/
http://www.cpc.ncep.noaa.gov/products/NMME/Phase1models.png
http://www.cpc.ncep.noaa.gov/products/NMME/Phase1models.png


many ensemble members fall into the same pre-

determined category, indicating the model confidence

in a particular outcome. A widely used format is to

present probabilities for each of three equal tercile

categories: above-normal, near-normal, and below-

normal. NMME probabilistic forecasts take this for-

mat, as have CPC’s operational monthly-mean and

seasonal outlooks for many years.

The current NMME real-time probabilistic forecasts

begin with the calculation of forecast anomalies. Each

month, the hindcast ensemble mean climatology of each

model is found using all members and all years (1982–

2010) of the hindcasts. This climatology is then sub-

tracted from each forecast ensemble member to create

forecast anomalies. The use of each model’s hindcast

climatology when computing anomalies corrects for

systematic bias in the mean (i.e., the systematic differ-

ence between the climatology of the model and the

observations).

The next step is the determination of tercile thresh-

olds, that is, the values that delimit the highest one-third

of the forecast anomalies, the middle one-third of the

forecast anomalies, and the lowest one-third. For each

model and forecast field, a normal (Gaussian) distribu-

tion is assumed to fit the data (please see note in next

paragraph about the Gaussian assumption). For each

model individually, a normal (Gaussian) distribution is

fit grid-point-wise to the 1982–2010 hindcasts (all

members, fixed lead, all years for each initial month.)

The standard deviation (std. dev.) of this Gaussian dis-

tribution is then found and used to define the tercile

thresholds. With a normal distribution, forecast anom-

alies above10.43 std. dev. are considered above normal

(A), below 20.43 std. dev. are below normal (B), and

any anomalies falling between20.43 and10.43 std. dev.

are near normal (N). Systematic bias in the mean is re-

moved when the model’s own climatology is used to

create the forecast anomalies. Systematic bias in the

distribution (a model may have too much or too little

spread compared to the observed field) is accounted for

as the standard deviation fit to the model data is used to

determine the tercile limits.

In the case of precipitation, a power transform of 1/4 is

applied to the original hindcast and forecast values to

bring the precipitation distribution closer to normal.

Some testing of this method has been done by the au-

thors, and it is found to be acceptably effective at cor-

recting the skewed distribution. However, it is very likely

that this technique, and the assumption of a Gaussian

distribution for some other variables, can be improved

upon, and different distributions and methods of de-

termining appropriate tercile thresholds for a nonnormal

TABLE 1. North American Multimodel Ensemble (NMME) models used in this study. (Expansions of acronyms are available online at

http://www.ametsoc.org/PubsAcronymList.)

Center/model

Hindcast

period

No. of

members

Arrangement

of members

Lead

(month)

Model

resolution

atmos.

Model

resolution

ocean Reference

NCEP/CFSv2 1982–2010 24

(28 Nov)

4 members

(0000,

0600, 1200,

1800 UTC)

0–9 T126L64 MOM4L40

0.258 equa-
tor (Eq)

Saha et al. (2014)

GFDL/CM2.1 1982–2010 10 All 1st of the

month 0000

UTC

0–11 2 3 2.58 L24 MOM4L50

0.38 Eq
Zhang et al. (2007)

Environment

Canada/CMC1-CanCM3

1981–2010 10 All 1st of the

month 0000

UTC

0–11 CanAM3

T63L31

CanOM4L40

0.948 Eq
Merryfield et al. (2013)

Environment

Canada/CMC1-CanCM4

1981–2010 10 All 1st of the

month 0000

UTC

0–11 CanAM4

T63L35

CanOM4L40

0.948 Eq
Merryfield et al. (2013)

NCAR/CCSM4 1982–2010 10 All 1st of the

month 0000

UTC

0–11 0.9 3 1.258 L26 POPL60 0.258
Eq

B. Kirtman et al.

(2015, unpublished

manuscript)

NASA/GEOS5 1981–2010 11 4 members

every 5th

days; 7

members

on the last

day of last

month

0–9 1 3 1.258 L72 MOM4L40

0.258 Eq
Vernieres et al. (2012)
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distribution will be tested in the course of the develop-

ment of forecast calibrations. Areas where 0mm of sea-

sonal precipitation is recorded for more than a third of

the years in the CMAP observed precipitation historical

record (10 or more years in the 29-yr record used in this

study; e.g., the eastern Sahara) have been masked out.

Probabilistic forecasts are then formed using the

forecast anomalies by counting the number of ensemble

members in each model that fall above, between, and

below the tercile thresholds from its own hindcast. The

numbers of ensemble members in each category for all

the models are then added together, and divided by the

total number of ensemble members in that month’s

NMME. The real-time NMME forecasts include over

110 members. Other methods of probabilistic forecast

formation, including a parametric probability estimator

applied to the forecast (in the current study, a para-

metric fit is only applied to the hindcast, to identify the

tercile boundaries), have been found to result in higher

skill scores for multimodel ensembles (Kharin et al.

2009). A thorough comparison of these and other tech-

niques in the context of the NMME is left for a later

study. The present study is a benchmark.

For this skill assessment, the above method is applied

to the hindcasts, with the following modifications: for

each of the 29 yr, one year is held out as the forecast to

be verified, and the model climatology and tercile

thresholds are calculated using the other 28 yr (cross

validation). Skill is evaluated for each forecast year, and

aggregated over the 29 yr (left out in turn). All results

shown below are cross-validated this way.

The hindcast skills of three different systems are

considered here. The ‘‘full NMME’’ comprises six

models: NCEP’s Climate Forecast System version 2

(CFSv2; Saha et al. 2014), CMC-CanCM3 and CanCM4

(Merryfield et al. 2013), GFDL-CM2.1 (Zhang et al.

2007), NCAR-CCSM4 (B. Kirtman et al. 2015, un-

published manuscript), and NASA-GEOS5 (Vernieres

et al. 2012) (Table 1). CFSv2 has 24 members for each

initial month (except for November, which has 28

members); the remaining models have 10 members,

except for GEOS5, which has 11, for a total of 75

members for the full NMME. (For the purposes of this

study, the last four members of the November initial

conditions from CFSv2 are ignored.) The second com-

bination considered in this study is a ‘‘mini-NMME’’

comprising four members from each of the six models,

for a total of 24 members. The last system considered is

forecasts from the 24-member CFSv2 alone. This model

has the highest number of ensemble members of any of

the NMME participant models, allowing for probabi-

listic forecasts with a relatively high resolution. The

evaluation of the three different combinations provides

some opportunity for comparing the relative skill of the

multimodel system with that of a single model, and the

effect of model diversity and ensemble size.

In the probabilistic NMME forecast expression, the

model forecasts are given equal weights in the consoli-

dation: one member, one vote (probabilistic). Many

previous studies have concluded that successful

weighting schemes are difficult to find, due at least in

part to the relatively short hindcast periods available

(Hagedorn et al. 2005; Tebaldi and Knutti 2007) and the

high colinearity of the forecasts (Peña and van denDool

2008). Hence, so-called equal weights should be satis-

factory. However, note that as each ensemble member is

equally counted in the probabilistic forecast, models

with more ensemble members contribute more to the

probability forecast.

d. Skill measures

Skill of the retrospective probabilistic forecasts is

assessed using the Brier score (BS), which provides a

summary of the mean squared error of probability

forecasts (Brier 1950; Wilks 2006). In the case of tercile

forecasts, each category is assessed separately as a di-

chotomous event forecast, where the observation is ei-

ther 1 (event occurred) or 0 (event did not occur), and

TABLE 2. Brier skill scores (BSS) for 3-month-mean seasons,

averaged over all 12 initial conditions for each lead, for SST

forecast–observation pairs area-aggregated in the Niño-3.4 region

(58S–58N, 1908–2408E). Rows show BSS for forecasts in each of

three terciles, above-normal (A), near-normal (N), and below-

normal (B), for three forecast systems: the full, 6-model NMME

with all members; a mini-NMME comprising 4 members from each

of the 6 models for a total of 24 members; and the 24-member

CFSv2 model. Six leads are shown; lead 0 is the 3-month-mean

forecast that includes the initial month, e.g., January–March for

January initial conditions, and so on. BSS for lead-1 forecasts are

printed in bold for visibility, as the discussion focuses on these

results. The upper and lower bounds of the 95% confidence in-

terval, determined from 1000 bootstrap samples with replacement,

are shown in brackets.

BSS: SST in Niño-3.4 region

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5

NMME

A 0.68 0.60 [0.603, 0.596] 0.54 0.48 0.42 0.38

N 0.34 0.23 [0.236, 0.228] 0.18 0.14 0.12 0.09

B 0.65 0.58 [0.580, 0.572] 0.54 0.51 0.48 0.45

mini-NMME

A 0.68 0.60 [0.607, 0.599] 0.54 0.48 0.43 0.38

N 0.35 0.24 [0.248, 0.239] 0.18 0.15 0.13 0.10

B 0.66 0.60 [0.599, 0.592] 0.56 0.53 0.49 0.45

CFSv2

A 0.53 0.45 [0.452, 0.441] 0.38 0.32 0.27 0.24

N 0.10 0.04 [0.043, 0.032] 0.02 0.03 0.03 0.01

B 0.49 0.43 [0.431, 0.420] 0.39 0.37 0.36 0.34
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the forecast is a percent likelihood (e.g., 0.45). The Brier

skill score (BSS) compares the Brier score of the model

forecasts to the Brier score of a reference (climatologi-

cal) forecast of 0.33 per tercile. A positive BSS indicates

that the BS of the model forecast is lower than the BS

of a climatological forecast.

The Brier score can be decomposed into three terms:

reliability, resolution, and an uncertainty term [see

Wilks (2006) for the algebraic decomposition], such that

Brier score 5 reliability 2 resolution 1 uncertainty. In

forecast verification, reliability represents the compari-

son of a forecast probability for an event to the observed

frequency of that event. For example, for all forecasts of

60% probability of above normal T2m, above normal

should be observed 60% of the time (for the forecast to

be reliable). Resolution gives an indication of the use of

different forecast probabilities, that is, the ability of the

forecast system to assign probabilities different from the

climatological probability (Wilks 2006). [The un-

certainty term depends on the observed event frequency

only, and so does not change in this evaluation among

FIG. 2. Reliability diagrams for probabilistic forecasts of sea

surface temperature (SST) in the Niño-3.4 region (58S–58N, 1908–
2408E) for the (a) NMME, (b) mini-NMME, and (c) CFSv2, ag-

gregated for the lead-1 season from all initial conditions. Red

lines indicate forecasts in the above tercile, blue the below, and

green the near-normal. Lines closer to the black diagonal mean

the observed event frequency (y axis) is close to the forecast

probability (x axis), and therefore the forecasts are more reliable.

Histograms indicate how often each forecast bin is used; numbers

on the y axis has been divided by 1000. All diagrams use 10 bins of

size 0.1. Alphanumeric insets show the reliability and resolution

terms of the Brier score for the above (A) and below (B) terciles.

As Brier score 5 reliability 2 resolution 1 uncertainty, higher-

resolution values and lower reliability values are desirable. Bars

indicate the 95% confidence intervals derived from 1000

bootstrapping tests.

FIG. 1. Brier skill score (BSS) area-aggregated for all lead-1

seasonal probabilistic forecasts of SST in the Niño-3.4 region (58S–
58N, 1908–2408E). Forecasts for the (top) above-normal and

(bottom) below-normal terciles are shown for three forecasting

systems: all members of the 6-model NMME (75members), a mini-

NMME comprising 4 members from each of the 6 models

(24 members), and the CFSv2 alone (24 members). The lead-1

forecast for December–February (DJF) is made using November

initial conditions, etc. Bars show the 95% confidence interval from

1000 bootstrap samples.
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forecast strategies (CFSv2 only, NMME, etc.) and is not

considered.]

The reliability and resolution can be illustrated by

the standard reliability diagram and insets, which

shows the full joint distribution of the forecasts and

observations (Wilks 2006; Weisheimer and Palmer

2014). These diagrams allow for visual comparison of

the conditional event frequency and the forecast

probability; the associated ‘‘sharpness diagrams’’ in-

dicate how often the forecast probabilities in each bin

are issued (Wilks 2006; Jolliffe and Stephenson 2012).

The ‘‘event’’ is an observation falling in a particular

tercile. Probability forecasts are assigned to one of 10

bins (0–0.1, etc.). Reliability is indicated by the distance

of the forecast line away from the diagonal, and reso-

lution is assessed by the distance of the forecast line

from the horizontal line along the observed climato-

logical frequency (0.33, in the case of tercile categories;

not shown.).

Confidence intervals for the statistics in this study

have been determined using a bootstrapping approach

(Wilks 2006; Doblas-Reyes et al. 2009). For each of the

geographical regions defined below, the forecast–

observation grid point pairs (which have already been

subjected to cross validation) have been resampled with

replacement 1000 times, and the BSS and reliability

statistics have been computed for each of the resulting

1000 samples; it is assumed that the resulting distribu-

tion of scores represents the true underlying sampling

distribution (Wilks 2006). The confidence intervals are

determined by ranking the results of the 1000 boot-

strapping tests and finding the 2.5th and 97.5th percen-

tiles. The standard error in a Brier score is inversely

proportional to the squared sample size (Ferro 2007).

The sample sizes used in this study are deliberately se-

lected to be very large, and it is expected that the

confidence intervals will be relatively small for the large

area-aggregated statistics herein.

3. Results

The Brier skill scores and other statistics used in this

study are area-aggregated over the following regions:

the Northern Hemisphere (238–758N; land-only T2m

and precipitation; ocean-only SST), the tropics (238S–
238N; ocean and land precipitation), and the Niño-3.4
region (58S–58N, 1908–2408E; SST). The substantial

drawback to a limited hindcast dataset (in this case, 29

forecast/observation pairs per grid point, initial condi-

tion, and target season) is that it is difficult to achieve

robustness in analyzed statistics. Area and other aggre-

gation methods may obscure local and seasonal varia-

tions, but they allow for a large sample and robust

statistics and therefore a meaningful comparison of re-

sults. As the current study is a baseline, the ability to

confidently compare potentially small differences in skill

from different forecasting systems is important.

We first examine the region and variable where the

highest skill is expected based on previous work: SST in

the Niño-3.4 region (Table 2). This table, and the sub-

sequent ones, present area-aggregated Brier skill scores

for the six 3-month-mean leads available, averaged over

all initial conditions, showing the change in BSS with

lead. Lead-0 forecasts are not issued in the real-time

NMME, and so the focus of this discussion is the results

for lead-1 (bold column in tables). The upper and lower

bounds of the 95% confidence interval of the sampling

distribution derived from 1000 bootstrap samples are

shown in parentheses for the lead-1 BSS. The seasonal

variation of BSS in lead-1 forecasts of SST in the Niño-
3.4 region is illustrated in Fig. 1, along with the confi-

dence intervals.

TABLE 3. As in Table 2, but for SST in the Northern Hemisphere (all ocean grid points 238–758N).

BSS: SST in Northern Hemisphere

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5

NMME

A 0.30 0.201 [0.202, 0.201] 0.16 0.14 0.13 0.12

N 0.04 20.001 [0.0, 20.001] 20.01 20.02 20.02 20.02

B 0.29 0.187 [0.188, 0.186] 0.15 0.13 0.11 0.10

mini-NMME

A 0.29 0.182 [0.183, 0.181] 0.14 0.11 0.10 0.09

N 0.03 20.02 [20.017, 20.019] 20.03 20.04 20.04 20.04

B 0.27 0.161 [0.162, 0.160] 0.12 0.10 0.09 0.08

CFSv2

A 0.25 0.125 [0.126, 0.124] 0.08 0.05 0.04 0.03

N 0.00 20.047 [-0.046, 20.048] 20.06 20.06 20.06 20.06

B 0.25 0.122 [0.123, 0.120] 0.08 0.05 0.04 0.03
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We find expectations for relatively high skill in the

Niño-3.4 region have been met, with BSS for the

NMME lead-1 forecasts of 0.60 for above normal and

0.58 for below normal (Table 2). BSS generally ranges

from 0 (skill no better than a climatological forecast) to

1 (a perfect forecast, where a probability of 100% was

issued for the category that was observed). Negative

BSS can occur, when the model forecast had less skill

than a climatological forecast. BSS 5 1 is likely im-

possible. A BSS of 0.6 represents a Brier score 60%

better than the Brier score for the climatological

forecast (always issuing a forecast probability of 0.33).

BSS 5 0.60 is quite high, indicating that confident

probabilities were issued for the category that was

observed. Even forecasts in the near-normal tercile, a

notoriously difficult target (van den Dool and Toth

1991; Kharin and Zwiers 2003), earn a BSS of 0.23 at

lead 1. The 24-member mini-NMME sees equivalent

BSS to the full NMME, suggesting that the larger en-

semble does not increase skill in this region of high

predictability. BSS for forecasts from the 24-member

CFSv2 are substantially lower for all terciles. This re-

lationship is further illustrated when the seasonal cycle

of the above-normal (Fig. 1, top) or below-normal

(Fig. 1, bottom) category forecasts is considered, with

the NMME and mini-NMME mostly overlapping, and

CFSv2 often substantially lower.

Brier skill scores are highest for forecasts for the

above-normal category from all model combinations

with target seasons in the boreal winter months. BSS for

forecasts of the above-normal category clearly show the

‘‘spring barrier,’’ including the March initial condition

forecasts for April–June (Fig. 1, top). There is some

difference in the BSS by target season between the

above- and below-normal category forecasts, as the

below-normal category forecasts (Fig. 1, bottom) do not

show the spring barrier effect.

The advantage of the multimodel forecasts over the

single model is further illustrated in the reliability

FIG. 3. As in Fig. 1, but for SST in the Northern Hemisphere (NH;

all ocean grid points 238–758N).

FIG. 4. As in Fig. 2, for SST in the NH (238–758N).
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diagrams for SST in the Niño-3.4 region. Looking at

NMME and mini-NMME reliability (Figs. 2a,b), the

above and below lines (red and blue, respectively) are

aligned with the diagonal (458 line), meaning these

forecasts are generally highly reliable, with observed

frequencies matching closely with predicted probabili-

ties. Reliability and resolution terms from the Brier

score, weighted by the frequency of use of each proba-

bility bin (insets in Figs. 2a,b), indicate that the re-

liability from the mini-NMME is slightly better than the

NMME (smaller reliability term), and the resolution is

similar but slightly higher in the full NMME.1

Reliability diagrams for the CFSv2 forecasts are flat-

ter (Fig. 2c), indicating lower resolution and over-

confidence; the resolution term is substantially lower

than for the other two forecast configurations. Sharpness

diagrams for all three forecasting systems indicate that

the lowest probabilities (0–0.1) and very highest (0.9–

1.0) are used muchmore often than others in this region;

this is not unexpected, as the persistence of anomalies in

this region would lead to a low likelihood that the

opposite tercile would be achieved, and the shape of

these diagrams is similar to that found for tropical sur-

face temperature in DEMETER and ENSEMBLES

(Alessandri et al. 2011). The CFSv2 forecasts use the

highest and lowest probabilities more often than

theNMMEdoes, consistent with the overconfidence. As

the points do not lie perfectly on the 458 line, and as the

reliability term is not zero, even for the full NMME, we

cannot say that the system is perfectly reliable (we

would be surprised if it were).

Continuing with SST, but now in the extratropical

Northern Hemisphere (Table 3), Brier skill scores for

lead-1 probabilistic forecasts from the NMME are close

to those of themini-NMME: 0.2 versus 0.18 (A) and 0.19

versus 0.17 (B). BSS for these categories from CFSv2

forecasts are lower: 0.13 for both A and B. Forecasts for

near-normal terciles are barely above zero for the

NMME, and are negative for the mini-NMME and

CFSv2, meaning these forecasts have too large proba-

bility anomalies (i.e., the difference between the fore-

cast probability and the climatological probability of

0.33) regarding extratropical SST. Examining the BSS

by target season (Fig. 3), we find that the NMME and

mini-NMME have a greater advantage over the CFSv2

for seasons in the first half of the year for both above-

and below-normal forecast categories. BSS in the late

boreal summer and fall converge for the three systems,

especially for forecasts of below normal. Compared to

the results for the Niño-3.4 region, the importance of

model diversity is slightly reduced.

The reliability diagram for forecasts of SST in the

Northern Hemisphere from the NMME lies very close

to the 458 diagonal for most probability bins (Fig. 4), and

mini-NMME forecasts are only slightly overconfident

(shallower slope). Assessment of CFSv2 forecasts

reveals a substantially shallower slope and an increased

reliability term (worse reliability), suggesting that the

multimodel approach is important for increasing the

quality of probabilistic forecasts for SST in the extra-

tropics. However, forecasts for the highest probabilities

(.80%) of both A and B categories for the full NMME

do not represent the observed frequency as well

(Fig. 4a), and so this may represent a limitation in

the models.

Moving to a field with less predictability (and there-

fore expected lower skill), precipitation in the tropics

has a maximum BSS for lead-1 forecasts in the above

and below terciles of 0.12 for the NMME and 0.1 for the

TABLE 4. As in Table 2, but for precipitation rate in the tropics (land and ocean, 238S–238N).

BSS: Precipitation rate in tropics

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5

NMME

A 0.17 0.119 [0.119, 0.118] 0.10 0.08 0.06 0.05

N 0.02 0.006 [0.006, 0.005] 0.00 0.00 20.01 20.01

B 0.17 0.118 [0.119, 0.117] 0.10 0.08 0.06 0.05

mini-NMME

A 0.15 0.095 [0.096, 0.094] 0.07 0.05 0.04 0.03

N 0.00 20.02 [20.018, 20.019] 20.02 20.03 20.03 20.03

B 0.15 0.097 [0.097, 0.096] 0.07 0.05 0.04 0.03

CFSv2

A 0.09 0.0038 [0.038, 0.037] 0.02 0.00 20.01 20.01

N 20.03 20.041 [20.041, 20.042] 20.04 20.04 20.05 20.04

B 0.08 0.032 [0.032, 0.030] 0.01 0.00 20.01 20.02

1 Brier score 5 reliability 2 resolution 1 uncertainty.
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mini-NMME (Table 4). The 24-member CFSv2 lead-1

forecasts achieve only BSS 5 0.04 for the above tercile,

and 0.03 for the below tercile. In both forecast configu-

rations, the skill for forecasts in the above and below

categories are nearly identical, implying that the 0.25

power transformation satisfactorily modifies the skew-

ness of the precipitation distribution for this assessment

(see section 2c for introduction of power transform

procedure). Forecasts from the CFSv2 have particularly

low BSS during the boreal summer and fall (Fig. 5),

while less seasonal variation is seen for the two multi-

model forecasts.

The 0.3 probability bin (i.e., climatological) is heavily

favored by CFSv2 precipitation forecasts in the tropics,

while NMME forecasts are distributed somewhat more

across the 0.2–0.49 bins (Fig. 6, sharpness diagrams). The

heavy use of near-climatological forecast bins indicates

that while these forecasts have ‘‘good’’ reliability, they

may not be particularly useful. Precipitation forecasts for

the extratropical Northern Hemisphere land were also

examined (not shown); BSS were uniformly negative for

these forecasts, and NMME scores were not substantially

better than the single-model performance.

Now, turning to a field with lower predictability, we

find probability forecasts for 2-m surface temperature

(T2m) in the Northern Hemisphere achieve BSS5 0.08

for the NMME lead-1 above and below categories

(Table 5). Although modest, these scores are higher

than those seen for forecasts from the mini-NMME

(0.05 for A and B) and CFSv2 (0.03 for A and 0.04 for

B). Both ensemble size and model diversity help for a

low-skill variable. The near-normal tercile BSS is below

zero from all three forecast systems. Both larger en-

semble size and amultimodel ensemble have been noted

to contribute value in low-skill areas such as Northern

Hemisphere surface temperature forecasts (Déqué
1997; Palmer et al. 2004).

FIG. 6. As in Fig. 2, but for precipitation rate in the tropics (238S–
238N). Green indicates forecasts in the above tercile, brown the

below, and orange the near-normal.

FIG. 5. As in Fig. 1, but for precipitation rate forecasts for all grid

points in the tropics (238S–238N).
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Lower BSS is found for 2-m surface temperature

forecasts of the boreal winter target seasons, and themini-

NMME and CFSv2 are near zero at times (Fig. 7). While

all three forecasts score higher BSS for summer and fall

seasons, CFSv2 closes the gap between it and theNMME,

particularly for forecasts for the below-normal category.

Forecasts from the NMME and mini-NMME for T2m

in the Northern Hemisphere have similar reliability:

0.001 and 0.002, respectively (Figs. 8a,b); the reliability

term is larger for CFSv2 (Fig. 8c). Ensemble size ap-

pears to improve resolution slightly in T2m, as the two

24-member systems (mini-NMME and CFSv2) have

similar resolutions, slightly lower than the full NMME.

Differences between the three model systems for the

uppermost forecast bins (80% and 90%) are not out-

side of the confidence intervals. It is remarkable that a

low skill variable such as T2m can be predicted with

very good reliability by the full NMME.

4. Summary and discussion

This study assessed the skill of the current method

used to produce NMME probabilistic forecasts using 29

years of cross-validated hindcasts. Probabilistic fore-

casts from a six-model, 75-member NMME; a mini-

NMME comprised of four members from each of the six

models; and the 24-member CFSv2 were assessed using

the Brier skill score (BSS). The hindcast assessment is

employed due to the relatively short time that real-time

probabilistic forecasts have been issued (about two

years). The real-time forecasts have become an impor-

tant tool for NOAAClimate Prediction Center seasonal

forecasters, as well as many others. This study will serve

as a baseline skill assessment before a series of im-

provements are attempted for the probability forecast

construction method.

The use of large area aggregations in this study has the

benefit of allowing a high degree of statistical signifi-

cance, so that we may comfortably compare these

relatively low scores between forecast systems. The

drawback of poolingmany geographical areas is that it is

unlikely that the true reliability of forecasts for the

southeastern United States is the same as that of fore-

casts for Siberia. A further study that marks specific

regions with higher or lower reliability [such as the

method of Weisheimer and Palmer (2014)] would be

interesting, especially after the method of constructing

TABLE 5. As in Table 2, but for 2-m surface temperature in the Northern Hemisphere (all land grid points, 238–758N).

BSS: T2m in Northern Hemisphere

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5

NMME

A 0.14 0.070 [0.071, 0.069] 0.06 0.06 0.05 0.05

N 20.01 20.019 [20.019, 20,019] 20.02 20.02 20.02 20.02

B 0.14 0.074 [0.075, 0.073] 0.07 0.07 0.06 0.06

mini-NMME

A 0.12 0.046 [0.046, 0,045] 0.04 0.04 0.03 0.03

N 20.02 20.037 [20.036, 20.037] 20.04 20.04 20.04 20.04

B 0.12 0.047 [0.048, 0.046] 0.04 0.04 0.03 0.03

CFSv2

A 0.10 0.027 [0.028, 0,026] 0.02 0.01 0.01 0.01

N 20.03 20.042 [20.042, 20.043] 20.04 20.04 20.04 20.04

B 0.11 0.034 [0.035, 0.034] 0.03 0.03 0.02 0.02

FIG. 7. As in Fig. 1, but for forecasts of 2-m temperature for all land

grid points in the NH (238–758N).
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probabilistic forecasts has been advanced. As well, a

thorough comparison to the results of earlier MME

systems, such as DEMETER and ENSEMBLES, while

out of the scope of the current study, would potentially

reveal the effects of higher horizontal resolution and

other model improvements.

For all of the areas and fields (2-m land-only surface

air temperature in the Northern Hemisphere, sea sur-

face temperature in the Niño-3.4 region and the extra-

tropical Northern Hemisphere, and precipitation in the

tropics) the 95% confidence intervals for BSS for

NMME forecasts are higher than those of CFSv2 fore-

casts. Skill scores for SST forecasts in both the Niño-3.4
region and Northern Hemisphere were very close or

equivalent for the NMME and the mini-NMME, and

higher thanCFSv2, suggesting that themodel diversity is

an important source of increased skill in these forecasts.

Results for precipitation rate in the tropics had a similar

pattern, although skill scores were lower in general in

this field. A lesser effect is seen in forecasts for Northern

Hemisphere T2m, where the modest scores increased

from CFSv2 to the mini-NMME, and again from the

mini-NMME to the NMME. It appears that the impor-

tance of model diversity goes up as a function of the

forecast skill, and the importance of ensemble size goes

down. Forecasts in the near-normal tercile are near or

below zero for all fields except sea surface temperature

in the Niño-3.4 region; even there, BSS of the near-

normal tercile is nevertheless much lower than the

above and below categories.

This preliminary study lends confidence that the

NMME probabilistic forecasts, even as is, provide value

beyond that of the CFSv2 alone. The NMME benefits

from both a higher number of ensemble members and

model diversity. Further study is required to assess the

sources of improved skill in the various fields and re-

gions. While the beneficial effect of larger ensemble

sizes is well known (e.g., Déqué 1997; Kumar et al. 2001;

Richardson 2001), the results of this study suggest that

the higher skill seen in the NMME is not merely the

effect of a larger ensemble. Ensemble member solutions

within a single model have a degree of correlation with

each other, resulting in a reduced effective number of

ensemble members. Because of this, 24 members from

the CFSv2 are likely not perfectly equivalent to 24

members collected from six models, as the effective

number of ensemble members would vary. This is

something to note, but a topic for another study.

While skill is limited for some of the elements and

domains studied, the visual inspection (via reliability di-

agrams) brings out a generally high reliability, even when

skill is modest. An example of this is Northern Hemi-

sphere extratropical T2m (Fig. 8). This encouraging result

is at least in part a consequence of the large number of

ensemble members. The further improvements in BSS

that we will seek in future work may not come from im-

proved reliability, but rather from fine-tuning the sharp-

ness distribution shown in the histograms.

For probabilistic forecasts, we presently use the count

method, which is not very precise, since it converts a

single forecast (with a known error, that we ignore) into

terciles with two ‘‘zeros’’ and one ‘‘one.’’ The impreci-

sion of the count method is a drawback mainly for small

FIG. 8. As in Fig. 2, but for 2-m surface temperature over land in

the NH.
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ensemble sizes, less so for larger ensembles like NMME

(75 members). It is likely then that when we use better

techniques to convert point forecasts to probabilities for

three classes (perhaps using ensemble regression; Unger

et al. 2008), CFSv2 may fare better in its BSS, and the

improvement of NMME over CFSv2 would be smaller.
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